Creating a Simple ChatGPT Wrapper Web Application
Hey everyone! I'm Buddhsen Tripathi, and I'm here to guide you through creating a simple web application that wraps around OpenAI's ChatGPT API. This application will allow you to interact with ChatGPT in a user-friendly web interface. Let's get started.
Prerequisites
Before we dive in, make sure you have the following:
- Basic understanding of HTML, CSS, and JavaScript
- Basic knowledge of Python and APIs
- An OpenAI API key (You can get one by signing up on the OpenAI platform)
Note: OpenAI API keys are free to obtain, but they require credits for you to actually make a call. You'll need to initially add $5 of credits to get started.
Step 1: Setting Up the Project
First, create a new directory for your project and navigate into it:
mkdir chatgpt-wrapper
cd chatgpt-wrapper
Install the required libraries and create an app.py
file:
# Assuming you've python 3 installed
pip install Flask Flask_cors
touch app.py
Step 2: Creating a Simple Flask Application
In your app.py
file, write the following code to set up your Flask application, which will make OpenAI API calls:
from flask import Flask, request, jsonify
from flask_cors import CORS
from openai import OpenAI
app = Flask(__name__)
CORS(app) # Enable CORS
client = OpenAI(
api_key='your-openAPI-key',
)
@app.route('/chat', methods=['POST'])
def chat():
user_message = request.json.get('message')
try:
response = client.chat.completions.create(
messages=[
{
"role": "user",
"content": user_message,
}
],
model="gpt-3.5-turbo",
)
print(response)
reply = response.choices[0].message.content
return jsonify({'reply': reply})
except Exception as e:
print(f"Error: {e}")
return jsonify({'error': 'Error communicating with ChatGPT'}), 500
if __name__ == '__main__':
app.run(port=5000, debug=True)
Replace 'your-openai-api-key'
with your actual OpenAI API key.
Step 3: Creating the Frontend
In your project directory, create an index.html
file:
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>ChatGPT Web App</title>
<style>
body {
font-family: Arial, sans-serif;
display: flex;
justify-content: center;
align-items: center;
height: 100vh;
margin: 0;
background-color: #f4f4f4;
}
.container {
text-align: center;
}
textarea {
width: 300px;
height: 100px;
margin-bottom: 10px;
}
button {
padding: 10px 20px;
font-size: 16px;
cursor: pointer;
}
.response {
margin-top: 20px;
font-size: 18px;
}
</style>
</head>
<body>
<div class="container">
<h1>ChatGPT Web App</h1>
<textarea id="userInput" placeholder="Type your message..."></textarea>
<br>
<button onclick="sendMessage()">Send</button>
<div class="response" id="response"></div>
</div>
<script>
async function sendMessage() {
const message = document.getElementById('userInput').value;
const responseDiv = document.getElementById('response');
try {
const response = await fetch('http://localhost:5000/chat', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({ message }),
});
if (!response.ok) {
throw new Error(`HTTP error! status: ${response.status}`);
}
const data = await response.json();
responseDiv.textContent = data.reply;
} catch (error) {
console.error('Error:', error);
responseDiv.textContent = 'Error communicating with server';
}
}
</script>
</body>
</html>
You can create separate files named 'styles.css' for styling and 'script.js' for JavaScript code to improve readability.
Step 4: Running the Application
Now, run this command to start your Flask application, which will run on port 5000:
python app.py
Open the index.html
file in your web browser. It should look like this:

Type any prompt and click send. You can view the response at the bottom.

Congratulations! You’ve just built a simple ChatGPT wrapper web application. This basic setup can be expanded with more features and improved UI to create a more robust and user-friendly application.
Stay tuned for more tech content and tutorials. Feel free to connect with me on my socials and provide feedback.
Related Posts
Introduction to AI Agents: How to Build a Simple AI Agent Using Python and GPT-4
Learn what AI agents are, how they work, and the different types used in real-world applications. Follow this step-by-step tutorial to build your first AI agent in Python—an intelligent wardrobe assistant powered by weather data and OpenAI’s GPT-4 API.
16-03-2025
How to Make OpenAI API Calls in Your JavaScript Application
Step-by-step guide to making OpenAI API calls in your JavaScript app using the openai-api-helper npm package. Learn how to integrate OpenAI’s capabilities into your project with ease.
22-07-2024
AI CUDA Engineer: Automating CUDA Kernel Optimization with LLMs
Discover how Sakana AI's AI CUDA Engineer leverages large language models (LLMs) to automate CUDA kernel optimization, delivering up to 145x faster performance over PyTorch. Explore the future of AI-driven high-performance computing.
20-02-2025